Potent block of inactivation-deficient Na+ channels by n-3 polyunsaturated fatty acids.
نویسندگان
چکیده
A voltage-gated, small, persistent Na(+) current (I(Na)) has been shown in mammalian cardiomyocytes. Hypoxia potentiates the persistent I(Na) that may cause arrhythmias. In the present study, we investigated the effects of n-3 polyunsaturated fatty acids (PUFAs) on I(Na) in HEK-293t cells transfected with an inactivation-deficient mutant (L409C/A410W) of the alpha-subunit (hH1(alpha)) of human cardiac Na(+) channels (hNav1.5) plus beta(1)-subunits. Extracellular application of 5 microM eicosapentaenoic acid (EPA; C20:5n-3) significantly inhibited I(Na). The late portion of I(Na) (I(Na late), measured near the end of each pulse) was almost completely suppressed. I(Na) returned to the pretreated level after washout of EPA. The inhibitory effect of EPA on I(Na) was concentration dependent, with IC(50) values of 4.0 +/- 0.4 microM for I(Na) peak (I(Na peak)) and 0.9 +/- 0.1 microM for I(Na late). EPA shifted the steady-state inactivation of I(Na peak) by -19 mV in the hyperpolarizing direction. EPA accelerated the process of resting inactivation of the mutant channel and delayed the recovery of the mutated Na(+) channel from resting inactivation. Other polyunsaturated fatty acids, docosahexaenoic acid, linolenic acid, arachidonic acid, and linoleic acid, all at 5 microM concentration, also significantly inhibited I(Na). In contrast, the monounsaturated fatty acid oleic acid or the saturated fatty acids stearic acid and palmitic acid at 5 microM concentration had no effect on I(Na). Our data demonstrate that the double mutations at the 409 and 410 sites in the D1-S6 region of hH1(alpha) induce inactivation-deficient I(Na) and that n-3 PUFAs inhibit mutant I(Na).
منابع مشابه
Effects of n−3 Polyunsaturated Fatty Acids on Cardiac Ion Channels
Dietary n-3 polyunsaturated fatty acids (PUFAs) have been reported to exhibit antiarrhythmic properties, and these effects have been attributed to their capability to modulate ion channels. In the present review, we will focus on the effects of PUFAs on a cardiac sodium channel (Na(v)1.5) and two potassium channels involved in cardiac atrial and ventricular repolarization (K(v)) (K(v)1.5 and K(...
متن کاملPolyunsaturated fatty acids are potent openers of human M-channels expressed in Xenopus laevis oocytes.
AIM Polyunsaturated fatty acids have been reported to reduce neuronal excitability, in part by promoting inactivation of voltage-gated sodium and calcium channels. Effects on neuronal potassium channels are less explored and experimental data ambiguous. The aim of this study was to investigate anti-excitable effects of polyunsaturated fatty acids on the neuronal M-channel, important for setting...
متن کاملChanges of fatty acid profiles in fillets of Cobia (Rachycentron canadum) during frozen storage
In this study changes in fatty acids profile during frozen storage at -18°C of Cobia (Rachycentron canadum), caught from the Persian Gulf (Bandar Abbas) were studied. Changes in saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs), polyunsaturated fatty acids (PUFAs), EPA+DHA/C16, n-3 PUFA/n-6 PUFA (n-3/n-6) and polyunsaturated fatty acids /saturated fatty acids (PUFA/SFA) were i...
متن کاملActions and Mechanisms of Polyunsaturated Fatty Acids on Voltage-Gated Ion Channels
Polyunsaturated fatty acids (PUFAs) act on most ion channels, thereby having significant physiological and pharmacological effects. In this review we summarize data from numerous PUFAs on voltage-gated ion channels containing one or several voltage-sensor domains, such as voltage-gated sodium (NaV), potassium (KV), calcium (CaV), and proton (HV) channels, as well as calcium-activated potassium ...
متن کاملChanges of fatty acid profiles in fillets of Cobia (Rachycentron canadum) during frozen storage
In this study changes in fatty acids profile during frozen storage at -18°C of Cobia (Rachycentron canadum), caught from the Persian Gulf (Bandar Abbas) were studied. Changes in saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs), polyunsaturated fatty acids (PUFAs), EPA+DHA/C16, n-3 PUFA/n-6 PUFA (n-3/n-6) and polyunsaturated fatty acids /saturated fatty acids (PUFA/SFA) were i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 290 2 شماره
صفحات -
تاریخ انتشار 2006